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Abstract. The problem of Aharonov-Bohm scattering on two parallel flux tubes of the 
same magnetic flux is solved exactly and the differential cross section is calculated. 

1. Introduction 

In our previous paper [2], we have solved exactly the Aharonov-Bohm (AB) scattering 
on two parallel flux lines of the same magnitude. In order to study the core size effect, 
in this paper we shall further solve exactly the AB scattering on two parallel flux tubes 
of the same magnitude Cp. The AB scattering on a single flux tube has previously been 
analysed by Aharonov et a1 [l]. We shall use the results of [2] and [ l ]  to discuss our 
problem. 

2. The wavefunction 

Let OXY be the coordinate plane perpendicular to two flux tubes of radius R. The 
coordinates of the tube centres are (a ,  0) and ( -a ,  0). In the case that the magnetic 
field is uniformly distributed in the tubes, the vector potential in the outside region is 
the same as in the case of the flux lines. Hence, we can directly write down the 
expression for the wavefunction, which is just the corrected version of equation (23) 
of [2] (as discussed in the corrigendum of [2]): 

m 

4 = c c {[CL+ c~/q+O(q2)1Cel(P,  4 ) + [ C r +  ~h?+O(q2)lFey1(P,  4 )  
m=O / 

+ [ S ~ l + ~ ~ / 4 + O ( 4 2 ) l S e l ( C L ,  4 )  

+ [ p m /  + SLq + O( q 2 )  I G ~ Y /  ( P, 4 )Ice, ( 0 , 4 )  

(1) 
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where (p ,  8 )  are elliptical coordinates, q = a2k2/4,  k = (2mE/ h2)1’2 is the wave number 
and a = - e Q , / 2 d c  is the quantum number of the flux. The coefficients CC,,, CC,,, 
Ski, . . . are functions of a. When a + 0, that is when q + 0, two magnetic tubes of flux 
Q, become one magnetic flux tube of flux 2Q. The solutions of these two cases should 
be equal and we shall use this fact to determine the coefficients CC,,, C‘,,, S‘,,, . . . . 
For the case of one impenetrable tube with flux 2@, we can use the results of [ 11, and 
directly write out the expression for the wavefunction: 

- 

where 

in [ 11, T = -7~12. Apparently, 4 m k (  R )  = 0, that is the required boundary condition is 
satisfied. Expression ( 2 )  can be written as 

i(-l)m e i u m - i m ~  

Ym -2rr ( kR  ) Jm -2a ( k p  + H ( ’ )  
m = i  m - Z a ( k R )  

- J, -2a  ( k~ ) Y, - 2 a  ( kp ) 3 e -im’. 

In the asymptotic region ( p  + CO or p + C O ) ,  the Bessel functions 

Jm*2a(kp) =cos a.irJm(kp)*sin (YT Ym(kp) 
Ymt2a(kp) = +sin a r J m ( k p ) + c o s  a 7 ~  Ym(kp). 

Substituting ( 6 )  into ( 5 )  we obtain 
oc i e - i a r r+ imr  

m=O m + 2 a ( k R )  
* = c H(1) { Y,+,,(kR)[cos a.rrJ,(kp)+sin a 7 ~  Ym(kp)] 

-J,+,,(kR)[-sin a.rrJ,,,(kp)+cos CYT Ym(kp)]}(cos m 4 + i  sin m 4 )  
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where 

4129 

, ian-i(2n+l)r 
L, 

- [- Y2n+l-2a(kR)  sin cos av] 
Hi',? 1 -2 a ( kR  ) 
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When p + 00, q + 0, (1) becomes 
m 

II, = c c [c‘, lP;Jl(kP) + G P i  YdkP) 
m=O I 

+ ~ J ~ s ~ ~ ~ ( k p ) + S ‘ , ~ s j ~ ( k p ) ] c o s  m+ 

+ c c [C”,PjJ,(kP)+ C d P i  W k P )  

+ S”,sjJI( k p )  + S”,,si YI( k p ) ]  sin m4 

m 

m = l  I 

(9) 

where the constant multipliers pi  and si are given in Mclachlan’s book [3, pp 368-91. 
Comparing (9) with (7) we obtain the coefficients C‘,,, e‘,,, SC,!,. . . ; finally we obtain 
the expression for the wavefunction in the case of two impenetrable flux tubes: 

3. The scattering cross section 

In the asymptotic region 4 = 8, 

II, =exp[-2 id+ikp  sin(O+T)]+f(R, e)- &’ 
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By the orthogonality of Mathieu functions we obtain 

_L exp[-2iaO+ikp sin(e+.r)]yi(e, q )  
7T -n 

L [ v  exp[-2 id+ikps in(e+. r ) ]y j (8 ,q)de=Gj  
77 -n 

e i k ~  e-ikp 

= G f ( a ,  q )  -+ GJ;(a, 4) - 6 6 

Substituting (13 ) - (15 )  into (12), then comparing the coefficients of e i k p / G ,  we can 
find F;.(a, 7): 

(16) F. = H +  - G f  
J  R j  1 ’  

Since yj(e,  q )  form a complete set, we can express f ( 0 )  as 

the coefficient of 
containing G; in (17) equals zero, hence 

can be proved to be equal to zero. The sum of those terms 
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3.1. Calculation of HR, 
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3.2. The case when q is small 

In this case we can expand y j (  8, q )  as a power series of q, and also f( 0, 0, q )  and fR : 

f ( & O ,  4 )  =fo(e)+fl(e)+O(q2) .  (26) 
From [2] we know that 

s i n 2 a 1 ~  erp[ - i (y -+ ; ) ] [ cos (~+ ; ) ]  B + T  7r B + T  IT . (27) 

From the corrigendum of [2] we know the corrected version of f l (  e): 

x [cosh-'Isec(T+ e)I+in/2 C O S ( T +  e)/]}. 

This is just the equation (E6) in the corrigendum of [2]. 
Similar to (26) we have 

f R  = f R  0 + f R  1 + 0 ( 4 ) * 

Through calculation we obtain the term not containing q, 

where 

and the term containing the first power of q 
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When q = 0 we get 

f ( 0 ,  R, 0 )  = f o ( e ) + f R O  

the same result as that in [ l ] .  

(34 )  

3.3. The case when R < -  a and q = a 2 k 2 / 4  is yet  very small 

On the RHS of (30 ) ,  the order of magnitude for all terms m # 0 is (see equation (25 )  
of [ 1 1 )  

1. (35 )  o(( k~)2Iml+Za w ( m )  

They make a very small contribution to the sum, the m = 0 term making the chief 
contribution. Calculating the m = 0 term and comparing it with equation (39)  of [ 1 1 ,  
we obtain 

and 

Substituting (36)  and (37 )  into (33)  and neglecting terms containing O ( q 2 )  and 

= o  

! , ,/j q = o * ,  

I 
I 4 

, 

-n/2 - n / 4  0 n14 n12 
e 

Figure 1. Dependence of U on 8. 
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O ( ( k R ) 2 " )  we obtain 
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(38) 

and 

ff = If(@, R, 4)12 

2 ~ x ( k R / 2 ) ~ "  sin 2a7r cos[;( 0 + T )  +:T - a'.] 

(39) 

- 
r ( i + 2 4  COS[:( 8 f 7) +:TI - f fR -0 - 

When r = - ~ / 2 ,  ct =i the dependence of u on 0 for q = 0 and q = 0.1, kR = 0 and 
kR = 0.01 are shown in figure 1. 
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